使用模拟器调试 Arm
模拟器和调试器在处理 V8 代码生成时非常有用。
- 它很方便,因为它允许您在没有实际硬件的情况下测试代码生成。
- 不需要 交叉 或原生编译。
- 模拟器完全支持对生成代码的调试。
请注意,此模拟器是为 V8 目的而设计的。仅实现了 V8 使用的功能,您可能会遇到未实现的功能或指令。在这种情况下,请随时实现它们并提交代码!
使用模拟器为 Arm 编译 #
在 x86 主机上,默认情况下,使用 gm 为 Arm 编译将为您提供模拟器构建
gm arm64.debug # For a 64-bit build or...
gm arm.debug # ... for a 32-bit build.
您也可以构建 optdebug
配置,因为 debug
可能有点慢,尤其是如果您想运行 V8 测试套件。
启动调试器 #
您可以在 n
条指令后立即从命令行启动调试器
out/arm64.debug/d8 --stop_sim_at <n> # Or out/arm.debug/d8 for a 32-bit build.
或者,您可以在生成的代码中生成一个断点指令
在本地,断点指令会导致程序使用 SIGTRAP
信号停止,允许您使用 gdb 调试问题。但是,如果使用模拟器运行,生成的代码中的断点指令将改为将您带入模拟器调试器。
您可以通过多种方式生成断点,方法是使用 Torque 中的 DebugBreak()
,来自 CodeStubAssembler,作为 TurboFan 通道中的节点,或者直接使用汇编器。
这里我们专注于调试低级原生代码,所以让我们看看汇编器方法
TurboAssembler::DebugBreak();
假设我们有一个使用 TurboFan 编译的称为 add
的 JIT 函数,我们想在开始时中断。给定一个 test.js
示例
// Our optimized function.
function add(a, b) {
return a + b;
}
// Typical cheat code enabled by --allow-natives-syntax.
%PrepareFunctionForOptimization(add);
// Give the optimizing compiler type feedback so it'll speculate `a` and `b` are
// numbers.
add(1, 3);
// And force it to optimize.
%OptimizeFunctionOnNextCall(add);
add(5, 7);
为此,我们可以挂钩到 TurboFan 的 代码生成器 并访问汇编器以插入我们的断点
void CodeGenerator::AssembleCode() {
// ...
// Check if we're optimizing, then look-up the name of the current function and
// insert a breakpoint.
if (info->IsOptimizing()) {
AllowHandleDereference allow_handle_dereference;
if (info->shared_info()->PassesFilter("add")) {
tasm()->DebugBreak();
}
}
// ...
}
然后我们运行它
$ d8 \
# Enable '%' cheat code JS functions.
--allow-natives-syntax \
# Disassemble our function.
--print-opt-code --print-opt-code-filter="add" --code-comments \
# Disable spectre mitigations for readability.
--no-untrusted-code-mitigations \
test.js
--- Raw source ---
(a, b) {
return a + b;
}
--- Optimized code ---
optimization_id = 0
source_position = 12
kind = OPTIMIZED_FUNCTION
name = add
stack_slots = 6
compiler = turbofan
address = 0x7f0900082ba1
Instructions (size = 504)
0x7f0900082be0 0 d45bd600 constant pool begin (num_const = 6)
0x7f0900082be4 4 00000000 constant
0x7f0900082be8 8 00000001 constant
0x7f0900082bec c 75626544 constant
0x7f0900082bf0 10 65724267 constant
0x7f0900082bf4 14 00006b61 constant
0x7f0900082bf8 18 d45bd7e0 constant
-- Prologue: check code start register --
0x7f0900082bfc 1c 10ffff30 adr x16, #-0x1c (addr 0x7f0900082be0)
0x7f0900082c00 20 eb02021f cmp x16, x2
0x7f0900082c04 24 54000080 b.eq #+0x10 (addr 0x7f0900082c14)
Abort message:
Wrong value in code start register passed
0x7f0900082c08 28 d2800d01 movz x1, #0x68
-- Inlined Trampoline to Abort --
0x7f0900082c0c 2c 58000d70 ldr x16, pc+428 (addr 0x00007f0900082db8) ;; off heap target
0x7f0900082c10 30 d63f0200 blr x16
-- Prologue: check for deoptimization --
[ DecompressTaggedPointer
0x7f0900082c14 34 b85d0050 ldur w16, [x2, #-48]
0x7f0900082c18 38 8b100350 add x16, x26, x16
]
0x7f0900082c1c 3c b8407210 ldur w16, [x16, #7]
0x7f0900082c20 40 36000070 tbz w16, #0, #+0xc (addr 0x7f0900082c2c)
-- Inlined Trampoline to CompileLazyDeoptimizedCode --
0x7f0900082c24 44 58000c31 ldr x17, pc+388 (addr 0x00007f0900082da8) ;; off heap target
0x7f0900082c28 48 d61f0220 br x17
-- B0 start (construct frame) --
(...)
--- End code ---
# Debugger hit 0: DebugBreak
0x00007f0900082bfc 10ffff30 adr x16, #-0x1c (addr 0x7f0900082be0)
sim>
我们可以看到我们在优化函数的开头停止了,模拟器给了我们一个提示!
请注意,这只是一个示例,V8 变化很快,因此细节可能会有所不同。但是您应该能够在任何可以使用汇编器的地方执行此操作。
调试命令 #
常用命令 #
在调试器提示符中输入 help
以获取有关可用命令的详细信息。这些包括通常的 gdb 类命令,例如 stepi
、cont
、disasm
等。如果模拟器在 gdb 下运行,gdb
调试器命令将控制权交给 gdb。然后,您可以从 gdb 使用 cont
返回调试器。
特定于体系结构的命令 #
每个目标体系结构都实现了自己的模拟器和调试器,因此体验和细节会有所不同。
printobject $register
(别名 po
) #
描述存储在寄存器中的 JS 对象。
例如,假设这次我们在 32 位 Arm 模拟器构建上运行 我们的示例。我们可以检查传递到寄存器中的传入参数
$ ./out/arm.debug/d8 --allow-natives-syntax test.js
Simulator hit stop, breaking at the next instruction:
0x26842e24 e24fc00c sub ip, pc, #12
sim> print r1
r1: 0x4b60ffb1 1264648113
# The current function object is passed with r1.
sim> printobject r1
r1:
0x4b60ffb1: [Function] in OldSpace
- map: 0x485801f9 <Map(HOLEY_ELEMENTS)> [FastProperties]
- prototype: 0x4b6010f1 <JSFunction (sfi = 0x42404e99)>
- elements: 0x5b700661 <FixedArray[0]> [HOLEY_ELEMENTS]
- function prototype:
- initial_map:
- shared_info: 0x4b60fe9d <SharedFunctionInfo add>
- name: 0x5b701c5d <String[#3]: add>
- formal_parameter_count: 2
- kind: NormalFunction
- context: 0x4b600c65 <NativeContext[261]>
- code: 0x26842de1 <Code OPTIMIZED_FUNCTION>
- source code: (a, b) {
return a + b;
}
(...)
# Now print the current JS context passed in r7.
sim> printobject r7
r7:
0x449c0c65: [NativeContext] in OldSpace
- map: 0x561000b9 <Map>
- length: 261
- scope_info: 0x34081341 <ScopeInfo SCRIPT_SCOPE [5]>
- previous: 0
- native_context: 0x449c0c65 <NativeContext[261]>
0: 0x34081341 <ScopeInfo SCRIPT_SCOPE [5]>
1: 0
2: 0x449cdaf5 <JSObject>
3: 0x58480c25 <JSGlobal Object>
4: 0x58485499 <Other heap object (EMBEDDER_DATA_ARRAY_TYPE)>
5: 0x561018a1 <Map(HOLEY_ELEMENTS)>
6: 0x3408027d <undefined>
7: 0x449c75c1 <JSFunction ArrayBuffer (sfi = 0x4be8ade1)>
8: 0x561010f9 <Map(HOLEY_ELEMENTS)>
9: 0x449c967d <JSFunction arrayBufferConstructor_DoNotInitialize (sfi = 0x4be8c3ed)>
10: 0x449c8dbd <JSFunction Array (sfi = 0x4be8be59)>
(...)
trace
(别名 t
) #
启用或禁用跟踪执行的指令。
启用后,模拟器将在执行指令时打印反汇编指令。如果您正在运行 64 位 Arm 构建,模拟器还能够跟踪寄存器值的更改。
您也可以使用 --trace-sim
标志从命令行启用它,以从一开始就启用跟踪。
使用相同的 示例
$ out/arm64.debug/d8 --allow-natives-syntax \
# --debug-sim is required on 64-bit Arm to enable disassembly
# when tracing.
--debug-sim test.js
# Debugger hit 0: DebugBreak
0x00007f1e00082bfc 10ffff30 adr x16, #-0x1c (addr 0x7f1e00082be0)
sim> trace
0x00007f1e00082bfc 10ffff30 adr x16, #-0x1c (addr 0x7f1e00082be0)
Enabling disassembly, registers and memory write tracing
# Break on the return address stored in the lr register.
sim> break lr
Set a breakpoint at 0x7f1f880abd28
0x00007f1e00082bfc 10ffff30 adr x16, #-0x1c (addr 0x7f1e00082be0)
# Continuing will trace the function's execution until we return, allowing
# us to make sense of what is happening.
sim> continue
# x0: 0x00007f1e00082ba1
# x1: 0x00007f1e08250125
# x2: 0x00007f1e00082be0
(...)
# We first load the 'a' and 'b' arguments from the stack and check if they
# are tagged numbers. This is indicated by the least significant bit being 0.
0x00007f1e00082c90 f9401fe2 ldr x2, [sp, #56]
# x2: 0x000000000000000a <- 0x00007f1f821f0278
0x00007f1e00082c94 7200005f tst w2, #0x1
# NZCV: N:0 Z:1 C:0 V:0
0x00007f1e00082c98 54000ac1 b.ne #+0x158 (addr 0x7f1e00082df0)
0x00007f1e00082c9c f9401be3 ldr x3, [sp, #48]
# x3: 0x000000000000000e <- 0x00007f1f821f0270
0x00007f1e00082ca0 7200007f tst w3, #0x1
# NZCV: N:0 Z:1 C:0 V:0
0x00007f1e00082ca4 54000a81 b.ne #+0x150 (addr 0x7f1e00082df4)
# Then we untag and add 'a' and 'b' together.
0x00007f1e00082ca8 13017c44 asr w4, w2, #1
# x4: 0x0000000000000005
0x00007f1e00082cac 2b830484 adds w4, w4, w3, asr #1
# NZCV: N:0 Z:0 C:0 V:0
# x4: 0x000000000000000c
# That's 5 + 7 == 12, all good!
# Then we check for overflows and tag the result again.
0x00007f1e00082cb0 54000a46 b.vs #+0x148 (addr 0x7f1e00082df8)
0x00007f1e00082cb4 2b040082 adds w2, w4, w4
# NZCV: N:0 Z:0 C:0 V:0
# x2: 0x0000000000000018
0x00007f1e00082cb8 54000466 b.vs #+0x8c (addr 0x7f1e00082d44)
# And finally we place the result in x0.
0x00007f1e00082cbc aa0203e0 mov x0, x2
# x0: 0x0000000000000018
(...)
0x00007f1e00082cec d65f03c0 ret
Hit and disabled a breakpoint at 0x7f1f880abd28.
0x00007f1f880abd28 f85e83b4 ldur x20, [fp, #-24]
sim>
break $address
#
在指定地址插入断点。
请注意,在 32 位 Arm 上,您只能有一个断点,并且您需要禁用代码页上的写保护才能插入它。64 位 Arm 模拟器没有此类限制。
再次使用我们的 示例
$ out/arm.debug/d8 --allow-natives-syntax \
# This is useful to know which address to break to.
--print-opt-code --print-opt-code-filter="add" \
test.js
(...)
Simulator hit stop, breaking at the next instruction:
0x488c2e20 e24fc00c sub ip, pc, #12
# Break on a known interesting address, where we start
# loading 'a' and 'b'.
sim> break 0x488c2e9c
sim> continue
0x488c2e9c e59b200c ldr r2, [fp, #+12]
# We can look-ahead with 'disasm'.
sim> disasm 10
0x488c2e9c e59b200c ldr r2, [fp, #+12]
0x488c2ea0 e3120001 tst r2, #1
0x488c2ea4 1a000037 bne +228 -> 0x488c2f88
0x488c2ea8 e59b3008 ldr r3, [fp, #+8]
0x488c2eac e3130001 tst r3, #1
0x488c2eb0 1a000037 bne +228 -> 0x488c2f94
0x488c2eb4 e1a040c2 mov r4, r2, asr #1
0x488c2eb8 e09440c3 adds r4, r4, r3, asr #1
0x488c2ebc 6a000037 bvs +228 -> 0x488c2fa0
0x488c2ec0 e0942004 adds r2, r4, r4
# And try and break on the result of the first `adds` instructions.
sim> break 0x488c2ebc
setting breakpoint failed
# Ah, we need to delete the breakpoint first.
sim> del
sim> break 0x488c2ebc
sim> cont
0x488c2ebc 6a000037 bvs +228 -> 0x488c2fa0
sim> print r4
r4: 0x0000000c 12
# That's 5 + 7 == 12, all good!
生成断点指令,并具有一些额外的功能 #
您可以使用更低级的指令代替 TurboAssembler::DebugBreak()
,该指令具有相同的效果,但具有额外的功能。
stop()
(32 位 Arm) #
Assembler::stop(Condition cond = al, int32_t code = kDefaultStopCode);
第一个参数是条件,第二个参数是停止代码。如果指定了代码,并且小于 256,则停止被称为“监视”,并且可以禁用/启用;计数器还跟踪模拟器命中此代码的次数。
假设我们正在处理这段 V8 C++ 代码
__ stop(al, 123);
__ mov(r0, r0);
__ mov(r0, r0);
__ mov(r0, r0);
__ mov(r0, r0);
__ mov(r0, r0);
__ stop(al, 0x1);
__ mov(r1, r1);
__ mov(r1, r1);
__ mov(r1, r1);
__ mov(r1, r1);
__ mov(r1, r1);
这是一个示例调试会话
我们遇到了第一个停止。
Simulator hit stop 123, breaking at the next instruction:
0xb53559e8 e1a00000 mov r0, r0
我们可以使用 disasm
查看以下停止。
sim> disasm
0xb53559e8 e1a00000 mov r0, r0
0xb53559ec e1a00000 mov r0, r0
0xb53559f0 e1a00000 mov r0, r0
0xb53559f4 e1a00000 mov r0, r0
0xb53559f8 e1a00000 mov r0, r0
0xb53559fc ef800001 stop 1 - 0x1
0xb5355a00 e1a00000 mov r1, r1
0xb5355a04 e1a00000 mov r1, r1
0xb5355a08 e1a00000 mov r1, r1
可以打印至少命中一次的所有(监视)停止的信息。
sim> stop info all
Stop information:
stop 123 - 0x7b: Enabled, counter = 1
sim> cont
Simulator hit stop 1, breaking at the next instruction:
0xb5355a04 e1a00000 mov r1, r1
sim> stop info all
Stop information:
stop 1 - 0x1: Enabled, counter = 1
stop 123 - 0x7b: Enabled, counter = 1
可以禁用或启用停止。(仅适用于监视的停止。)
sim> stop disable 1
sim> cont
Simulator hit stop 123, breaking at the next instruction:
0xb5356808 e1a00000 mov r0, r0
sim> cont
Simulator hit stop 123, breaking at the next instruction:
0xb5356c28 e1a00000 mov r0, r0
sim> stop info all
Stop information:
stop 1 - 0x1: Disabled, counter = 2
stop 123 - 0x7b: Enabled, counter = 3
sim> stop enable 1
sim> cont
Simulator hit stop 1, breaking at the next instruction:
0xb5356c44 e1a00000 mov r1, r1
sim> stop disable all
sim> con
Debug()
(64 位 Arm) #
MacroAssembler::Debug(const char* message, uint32_t code, Instr params = BREAK);
此指令默认情况下是一个断点,但也能够启用和禁用跟踪,就像您在调试器中使用 trace
命令一样。您也可以为它提供一条消息和一个代码作为标识符。
假设我们正在处理这段 V8 C++ 代码,它来自准备调用 JS 函数的框架的原生内置函数。
int64_t bad_frame_pointer = -1L; // Bad frame pointer, should fail if it is used.
__ Mov(x13, bad_frame_pointer);
__ Mov(x12, StackFrame::TypeToMarker(type));
__ Mov(x11, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress,
masm->isolate()));
__ Ldr(x10, MemOperand(x11));
__ Push(x13, x12, xzr, x10);
使用 DebugBreak()
插入断点可能很有用,这样我们就可以在运行它时检查当前状态。但是,如果我们使用 Debug()
,我们可以更进一步并跟踪此代码
// Start tracing and log disassembly and register values.
__ Debug("start tracing", 42, TRACE_ENABLE | LOG_ALL);
int64_t bad_frame_pointer = -1L; // Bad frame pointer, should fail if it is used.
__ Mov(x13, bad_frame_pointer);
__ Mov(x12, StackFrame::TypeToMarker(type));
__ Mov(x11, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress,
masm->isolate()));
__ Ldr(x10, MemOperand(x11));
__ Push(x13, x12, xzr, x10);
// Stop tracing.
__ Debug("stop tracing", 42, TRACE_DISABLE);
它允许我们仅跟踪我们正在处理的代码片段的寄存器值
$ d8 --allow-natives-syntax --debug-sim test.js
# NZCV: N:0 Z:0 C:0 V:0
# FPCR: AHP:0 DN:0 FZ:0 RMode:0b00 (Round to Nearest)
# x0: 0x00007fbf00000000
# x1: 0x00007fbf0804030d
# x2: 0x00007fbf082500e1
(...)
0x00007fc039d31cb0 9280000d movn x13, #0x0
# x13: 0xffffffffffffffff
0x00007fc039d31cb4 d280004c movz x12, #0x2
# x12: 0x0000000000000002
0x00007fc039d31cb8 d2864110 movz x16, #0x3208
# ip0: 0x0000000000003208
0x00007fc039d31cbc 8b10034b add x11, x26, x16
# x11: 0x00007fbf00003208
0x00007fc039d31cc0 f940016a ldr x10, [x11]
# x10: 0x0000000000000000 <- 0x00007fbf00003208
0x00007fc039d31cc4 a9be7fea stp x10, xzr, [sp, #-32]!
# sp: 0x00007fc033e81340
# x10: 0x0000000000000000 -> 0x00007fc033e81340
# xzr: 0x0000000000000000 -> 0x00007fc033e81348
0x00007fc039d31cc8 a90137ec stp x12, x13, [sp, #16]
# x12: 0x0000000000000002 -> 0x00007fc033e81350
# x13: 0xffffffffffffffff -> 0x00007fc033e81358
0x00007fc039d31ccc 910063fd add fp, sp, #0x18 (24)
# fp: 0x00007fc033e81358
0x00007fc039d31cd0 d45bd600 hlt #0xdeb0